Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[(2-Hydroxy-1-naphthyl)(piperidin-1-yl)methyl]benzonitrile

Zhi-Rong Qu

Ordered Matter Science Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: xraylab@hotmail.com

Received 3 July 2007; accepted 4 July 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.100; data-to-parameter ratio = 15.7.

Molecules of the title compound, $C_{23}H_{22}N_2O$, have normal geometric parameters. An intramolecular $O-H\cdots N$ hydrogen bond stabilizes the molecular conformation. The crystal packing is characterized by helical chains of molecules linked by $C-H\cdots O$ hydrogen bonds.

Related literature

For unnatural homochiral aminophenol compounds obtained by Betti-type reaction, see: Lu *et al.* (2002); Xu *et al.* (2004); Wang *et al.* (2005).

Experimental

Crystat aata	
$C_{23}H_{22}N_2O$	

$M_r = 342.43$
Monoclinic, $P2_1/c$
a = 11.9008 (13) Å

b = 15.0138 (17) Å
c = 10.8886 (13) Å
$\beta = 102.867 \ (3)^{\circ}$
$V = 1896.7 (4) \text{ Å}^3$

```
Z = 4
Mo K\alpha radiation
\mu = 0.07 \text{ mm}^{-1}
```

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min} = 0.98, T_{\max} = 0.98$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.100$ S = 1.023731 reflections 238 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1A \cdots N1 \\ C15 - H15 \cdots O1^{i} \end{array}$	0.84 (2) 0.93	1.90 (2) 2.40	2.598 (2) 3.236 (2)	139.3 (19) 149
Symmetry code: (i) -r	$v + \frac{1}{2} - z + \frac{1}{2}$			

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Starter Fund of Southeast University for financial support towards the purchase of the CCD X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2428).

References

- Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Lu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367–8369.

Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897–1900.

Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). *Tetrahedron Asymmetry* **15**, 475–479.

T = 291 (2) K

 $R_{\rm int} = 0.037$

refinement

 $\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\min} = -0.11 \text{ e} \text{ Å}^{-3}$

 $0.30 \times 0.26 \times 0.24$ mm

11353 measured reflections 3731 independent reflections

2420 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained

supplementary materials

Acta Cryst. (2007). E63, o3429 [doi:10.1107/S160053680703259X]

3-[(2-Hydroxy-1-naphthyl)(piperidin-1-yl)methyl]benzonitrile

Z.-R. Qu

Comment

Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu *et al.*, 2002; Xu *et al.*, 2004; Wang *et al.*, 2005).

Molecules of the title compound have normal geometric parameters. An intramolecular O—H…N hydrogen bond stabilizes the molecule conformation. The crystal packing is characterized by helical chains of molecules linked by C—H…O hydrogen bonds.

Experimental

2-naphthol (40 mmol, 5.77 g), 3-formylbenzonitrile (40 mmol, 5.25 g) and piperidine (40 mmol, 3.4 g) were added in a flask and reacted at 80 °C with stirring for one day. Then 50 ml e thanol was added to the flask and all the reactants were refluxed for five hours. After cooled to room temperature, the solution was filtered and white solid (compound I) was obtained as colorless block crystal.

Refinement

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) Å, and with $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. Packing diagram of the title compound. H atoms except H1A, H15 and H11 have been omitted for clarity.

3-[(2-Hydroxy-1-naphthyl)(piperidin-1-yl)methyl]benzonitrile

 $F_{000} = 728$

 $D_{\rm x} = 1.199 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 1875 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.2 - 21.5^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$

T = 291 (2) K

Block, colourless

 $0.30 \times 0.26 \times 0.24 \text{ mm}$

Crystal of	data
------------	------

C₂₃H₂₂N₂O $M_r = 342.43$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.9008 (13) Å b = 15.0138 (17) Å c = 10.8886 (13) Å $\beta = 102.867 (3)^{\circ}$ $V = 1896.7 (4) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer	3731 independent reflections
Radiation source: sealed tube	2420 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 291(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -14 \rightarrow 14$
$T_{\min} = 0.98, \ T_{\max} = 0.98$	$k = -14 \rightarrow 18$
11353 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.100$	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{max} < 0.001$
3731 reflections	$\Delta \rho_{max} = 0.11 \text{ e } \text{\AA}^{-3}$
238 parameters	$\Delta \rho_{\rm min} = -0.11 \ e \ \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y C1 0.0403(4)0.30955 (12) 0.12699(11) 0.28437 (15) C2 0.27607 (14) 0.05048 (11) 0.21554 (17) 0.0485 (4) C3 0.32243 (16) 0.02771 (12) 0.11143 (18) 0.0553 (5) H3 0.2952 0.066* -0.02200.0629 C4 0.40741 (16) 0.07881 (12) 0.08203 (18) 0.0566 (5) H4 0.4403 0.0615 0.0159 0.068* C5 0.44673 (14) 0.15727 (12) 0.14922 (18) 0.0497(4)C6 0.53715 (14) 0.12228 (18) 0.20855 (12) 0.0518 (5) H6 0.5736 0.1897 0.0597 0.062* C7 0.57231 (16) 0.28492 (13) 0.18571 (19) 0.0615 (5) H70.6329 0.3178 0.1679 0.074* C8 0.51596 (15) 0.31318 (13) 0.27803 (18) 0.0591 (5) H8 0.5383 0.3665 0.3199 0.071* C9 0.42956 (15) 0.26544 (13) 0.30865 (17) 0.0555 (5) H9 0.067* 0.3932 0.2869 0.3700 C10 0.39372 (13) 0.18291 (11) 0.24820 (16) 0.0436 (4) C11 0.25970 (13) 0.15140 (10) 0.39746 (16) 0.0433 (4) H11 0.3176 0.1861 0.4564 0.052* C12 0.15260 (14) 0.20908 (11) 0.35548 (17) 0.0460 (4) C13 0.06387 (15) 0.18524 (12) 0.25509 (19) 0.0553 (5) H13 0.0698 0.1330 0.2110 0.066* C14 -0.03407 (14) 0.23828 (11) 0.21927 (17) 0.0500(4) C15 -0.04187 (17) 0.31443 (13) 0.28523 (19) 0.0644 (5) H15 0.077* -0.10750.3496 0.2624 C16 0.04448 (15) 0.34030(13) 0.38410 (19) 0.0597 (5) H16 0.0383 0.3930 0.4270 0.072* C17 0.14176 (16) 0.28668 (11) 0.41951 (18) 0.0569 (5) H17 0.2003 0.3035 0.068* 0.4873 C18 -0.12332(15)0.21210(11) 0.11744 (19) 0.0490 (4) 0.0585 (5) C19 0.17039 (16) 0.08659 (13) 0.56160 (19) H19A 0.0981 0.1157 0.5243 0.070* H19B 0.070* 0.2148 0.1264 0.6242 C20 0.14652 (16) 0.00002 (13) 0.6246(2)0.0622(5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H20A	0.1056	0.0134	0.6901	0.075*
H20B	0.0974	-0.0377	0.5627	0.075*
C21	0.25598 (17)	-0.04955 (14)	0.68138 (19)	0.0649 (5)
H21A	0.2375	-0.1063	0.7145	0.078*
H21B	0.3018	-0.0153	0.7502	0.078*
C22	0.32365 (16)	-0.06450 (13)	0.58052 (19)	0.0613 (5)
H22B	0.2810	-0.1042	0.5166	0.074*
H22A	0.3968	-0.0925	0.6177	0.074*
C23	0.34519 (14)	0.02330 (13)	0.52003 (19)	0.0553 (5)
H23A	0.3916	0.0618	0.5831	0.066*
H23B	0.3876	0.0123	0.4551	0.066*
N1	0.23443 (10)	0.06843 (9)	0.46359 (14)	0.0472 (4)
N2	-0.19638 (14)	0.19212 (12)	0.03453 (17)	0.0689 (5)
01	0.19695 (11)	-0.00654 (8)	0.24320 (13)	0.0568 (3)
H1A	0.1741 (17)	0.0125 (14)	0.306 (2)	0.068*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0355 (7)	0.0412 (9)	0.0427 (9)	0.0043 (6)	0.0054 (7)	0.0003 (7)
C2	0.0498 (9)	0.0394 (9)	0.0551 (11)	0.0039 (8)	0.0093 (8)	0.0010 (8)
C3	0.0623 (11)	0.0405 (9)	0.0615 (12)	0.0136 (8)	0.0106 (9)	-0.0089 (8)
C4	0.0647 (11)	0.0565 (11)	0.0510(11)	0.0148 (10)	0.0181 (9)	0.0013 (9)
C5	0.0453 (9)	0.0527 (10)	0.0539 (11)	0.0040 (8)	0.0173 (8)	0.0041 (8)
C6	0.0464 (9)	0.0604 (12)	0.0532 (11)	0.0159 (9)	0.0206 (8)	0.0172 (9)
C7	0.0581 (11)	0.0619 (13)	0.0633 (13)	-0.0099 (9)	0.0109 (10)	0.0198 (10)
C8	0.0597 (11)	0.0615 (12)	0.0533 (12)	-0.0201 (9)	0.0067 (9)	0.0022 (9)
C9	0.0548 (10)	0.0633 (12)	0.0479 (11)	-0.0189 (9)	0.0102 (8)	0.0013 (9)
C10	0.0369 (8)	0.0509 (10)	0.0411 (9)	0.0058 (7)	0.0046 (7)	0.0070 (7)
C11	0.0395 (8)	0.0406 (8)	0.0499 (10)	-0.0042 (7)	0.0098 (7)	-0.0003 (7)
C12	0.0416 (8)	0.0450 (9)	0.0558 (11)	0.0043 (7)	0.0201 (8)	0.0129 (8)
C13	0.0588 (10)	0.0454 (10)	0.0653 (12)	-0.0003 (9)	0.0217 (9)	-0.0090 (9)
C14	0.0503 (10)	0.0417 (9)	0.0596 (11)	-0.0122 (8)	0.0158 (8)	0.0164 (8)
C15	0.0689 (12)	0.0550 (12)	0.0592 (12)	0.0147 (10)	-0.0073 (10)	0.0098 (9)
C16	0.0621 (11)	0.0542 (11)	0.0633 (13)	0.0126 (9)	0.0147 (10)	-0.0117 (9)
C17	0.0643 (11)	0.0423 (10)	0.0533 (11)	-0.0030 (8)	-0.0101 (9)	0.0094 (8)
C18	0.0500 (10)	0.0491 (10)	0.0548 (11)	0.0025 (8)	0.0264 (9)	-0.0040 (8)
C19	0.0560 (10)	0.0628 (12)	0.0614 (12)	0.0023 (9)	0.0234 (9)	0.0091 (10)
C20	0.0606 (11)	0.0656 (12)	0.0610 (12)	0.0086 (10)	0.0149 (9)	0.0154 (10)
C21	0.0696 (12)	0.0693 (13)	0.0577 (12)	0.0199 (10)	0.0183 (10)	0.0159 (10)
C22	0.0634 (11)	0.0590 (11)	0.0647 (13)	0.0303 (10)	0.0213 (10)	0.0200 (10)
C23	0.0429 (9)	0.0651 (12)	0.0584 (12)	0.0137 (9)	0.0120 (8)	0.0145 (9)
N1	0.0390 (7)	0.0481 (8)	0.0547 (9)	0.0042 (6)	0.0110 (6)	0.0129 (7)
N2	0.0621 (10)	0.0778 (12)	0.0612 (11)	0.0263 (9)	0.0021 (9)	0.0027 (9)
01	0.0627 (8)	0.0454 (7)	0.0613 (9)	-0.0108 (6)	0.0118 (6)	-0.0089 (6)

Geometric parameters (Å, °)

C1—C2	1.381 (2)	C14—C15	1.364 (3)

C1—C10	1.428 (2)	C14—C18	1.410 (3)
C1—C11	1.526 (2)	C15—C16	1.369 (3)
C2—O1	1.355 (2)	С15—Н15	0.9300
C2—C3	1.409 (3)	C16—C17	1.392 (2)
C3—C4	1.363 (3)	С16—Н16	0.9300
С3—Н3	0.9300	С17—Н17	0.9300
C4—C5	1.410 (3)	C18—N2	1.145 (2)
C4—H4	0.9300	C19—N1	1.468 (2)
C5—C6	1.406 (2)	C19—C20	1.525 (3)
C5—C10	1.418 (2)	С19—Н19А	0.9700
C6—C7	1.356 (3)	С19—Н19В	0.9700
С6—Н6	0.9300	C20—C21	1.508 (2)
С7—С8	1.393 (3)	C20—H20A	0.9700
С7—Н7	0.9300	C20—H20B	0.9700
C8—C9	1.355 (2)	C21—C22	1.516 (3)
С8—Н8	0.9300	C21—H21A	0.9700
C9—C10	1.423 (2)	C21—H21B	0.9700
С9—Н9	0.9300	C22—C23	1.521 (3)
C11—N1	1.502 (2)	C22—H22B	0.9700
C11—C12	1.524 (2)	C22—H22A	0.9700
C11—H11	0.9800	C23—N1	1.488 (2)
C12—C17	1.378 (2)	С23—Н23А	0.9700
C12—C13	1.387 (2)	С23—Н23В	0.9700
C13—C14	1.394 (2)	O1—H1A	0.84 (2)
С13—Н13	0.9300		
C2—C1—C10	118.34 (15)	C14—C15—C16	121.65 (17)
C2—C1—C11	121.38 (15)	C14—C15—H15	119.2
C10—C1—C11	120.27 (14)	С16—С15—Н15	119.2
O1—C2—C1	122.39 (16)	C15—C16—C17	119.09 (17)
O1—C2—C3	116.20 (15)	С15—С16—Н16	120.5
C1—C2—C3	121.41 (16)	С17—С16—Н16	120.5
C4—C3—C2	119.76 (17)	C12—C17—C16	120.96 (17)
С4—С3—Н3	120.1	С12—С17—Н17	119.5
С2—С3—Н3	120.1	С16—С17—Н17	119.5
C3—C4—C5	121.74 (18)	N2-C18-C14	179.0 (2)
C3—C4—H4	119.1	N1—C19—C20	110.32 (16)
C5—C4—H4	119.1	N1—C19—H19A	109.6
C6—C5—C4	122.00 (18)	С20—С19—Н19А	109.6
C6—C5—C10	120.04 (17)	N1-C19-H19B	109.6
C4—C5—C10	117.95 (16)	С20—С19—Н19В	109.6
C7—C6—C5	121.36 (18)	H19A—C19—H19B	108.1
C7—C6—H6	119.3	C21-C20-C19	111.99 (16)
С5—С6—Н6	119.3	C21—C20—H20A	109.2
C6—C7—C8	118.79 (17)	C19—C20—H20A	109.2
C6—C7—H7	120.6	C21—C20—H20B	109.2
C8—C7—H7	120.6	C19—C20—H20B	109.2
C9—C8—C7	122.02 (19)	H20A—C20—H20B	107.9
С9—С8—Н8	119.0	C20—C21—C22	109.00 (16)
С7—С8—Н8	119.0	C20—C21—H21A	109.9

supplementary materials

C8—C9—C10	120.84 (18)	C22—C21—H21A	109.9
С8—С9—Н9	119.6	C20-C21-H21B	109.9
С10—С9—Н9	119.6	C22—C21—H21B	109.9
C5—C10—C9	116.72 (15)	H21A—C21—H21B	108.3
C5—C10—C1	120.54 (16)	C21—C22—C23	110.69 (16)
C9—C10—C1	122.73 (15)	C21—C22—H22B	109.5
N1-C11-C12	111.81 (12)	C23—C22—H22B	109.5
N1—C11—C1	110.06 (13)	C21—C22—H22A	109.5
C12—C11—C1	110.11 (13)	C23—C22—H22A	109.5
N1-C11-H11	108.3	H22B—C22—H22A	108.1
C12-C11-H11	108.3	N1—C23—C22	110.76 (14)
C1—C11—H11	108.3	N1—C23—H23A	109.5
C17—C12—C13	118.43 (15)	С22—С23—Н23А	109.5
C17—C12—C11	119.65 (16)	N1—C23—H23B	109.5
C13—C12—C11	121.91 (15)	С22—С23—Н23В	109.5
C12-C13-C14	121.04 (16)	H23A—C23—H23B	108.1
С12—С13—Н13	119.5	C19—N1—C23	109.87 (14)
C14—C13—H13	119.5	C19—N1—C11	112.71 (13)
C15—C14—C13	118.83 (17)	C23—N1—C11	108.79 (12)
C15—C14—C18	121.33 (16)	C2—O1—H1A	109.5 (14)
C13—C14—C18	119.83 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1A···N1	0.84 (2)	1.90 (2)	2.598 (2)	139.3 (19)
C15—H15…O1 ⁱ	0.93	2.40	3.236 (2)	149
Symmetry codes: (i) $-x$, $y+1/2$, $-z+1/2$.				

sup-6

